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Abstract
A simple resonance factorized scattering theory is studied by the
thermodynamic Bethe ansatz technique. While the limiting ultraviolet central
charge is predicted to be c = 1, at the intermediate distances the model reveals
the characteristic pattern of the trajectory which flows down wandering about
several different fixed points. The field theory nature of the model considered
is not completely clear, however.

PACS numbers: 11.80.−m, 05.50.+q, 11.25.Hf

1. Preliminaries

The thermodynamic Bethe ansatz (TBA) [1, 2] is proved to be a useful technique in studying
2D integrable models of relativistic field theory. It is applied in the situation when the
relativistic factorized scattering theory (RFST) is known and allows the extraction of certain
off-mass-shell characteristics, including the ultraviolet (UV) parameters of the background
field theory. This provides an explicit and direct link between the RFST and the conformal
field theory (CFT) which governs the UV behaviour of the corresponding integrable model.
Several RFSTs, previously conjectured as scattering theories of important integrable models,
were verified in this way [2–4]. On the other hand, many RFSTs can be constructed, which
are completely consistent from the scattering theory’s point of view, but they lack any known
field theory interpretation. In the present paper one particular example is considered. We
shall see that even very simple RFST can hide rather rich and interesting off-mass-shell
pattern.

* This paper first appeared in preprint form in 1991; it is included here as the Guest Editors feel it is of great interest
for the theme of this special issue, and they wish to take this opportunity to circulate its results more widely to the
community.
1 Permanent address: Institute of Theoretical Experimental Physics B. Cheremushkinskaya 25, 117259, Moscow,
Russia.
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Figure 1. Zeros (•) and poles (×) of the scattering amplitude (1). The structure in the rest part of
the θ -plane follows from the periodicity S(θ + 2iπ) = S(θ).

Figure 2. Analytic structure in the s-plane. The poles (dashed crosses) on the second sheet are
misplaced a bit for transparency; in fact, they are just under the zeros.

2. The scattering theory

The RFST we are going to consider here contains a single stable particle, which we choose
to be the neutral boson of mass m. On the same footing one can consider it as the fermion,
changing the sign of the scattering amplitude below. The RFST is completely defined by the
two-particle scattering amplitude

S(θ) = tanh

(
θ − θ0

2
− iπ

4

)
tanh

(
θ + θ0

2
− iπ

4

)
, (1)

where θ = θ1 − θ2 is the rapidity difference of two colliding particles and θ0 is a real parameter.
This amplitude satisfies the usual requirements of crossing symmetry and unitarity

S(θ) = S(iπ − θ), S(θ)S(−θ) = 1 (2)

and exhibits in the physical strip 0 � Im θ < π two zeros at θ = iπ/2 ± θ0 (figure 1).
The analytic structure in the s-channel invariant s = 2m2(1 + cosh θ) is presented in figure 2.
As usual for the diagonal scattering of neutral particles we have the two-sheet Riemann surface
with square-root threshold branch points 0 and 4m2, which originate the u-channel cut (−∞, 0]
and the s-channel one [4m2,∞). Two zeros are located at s = 2m2 ± 2im2 sinh θ0 on the
physical sheet, while on the second (unphysical) sheet there are two resonance poles at the
same positions (figure 2).
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3. Motivations

There are basically two motivations to study the scattering theory above. First, it can be
considered as a massive version of the Goldstone resonance scattering theory suggested in
[5] in connection with the massless integrable field theory interpolating between the tricritical
Ising fixed point and the critical Ising one. In that case the massless particles were the
Goldstone fermions respecting nonlinear realization of spontaneously broken supersymmetry
and the resonance pole was interpreted as a manifestation of unstable Higgs boson. Suppose
now some perturbation of this field theory, which explicitly breaks the SUSY and provides
the Goldstone particles with a small mass m, while preserving the integrability. Then the
scattering theory described above (with eθ0 � 1) seems natural; the Higgs boson mass scale
is M2 = m2 eθ0 .

The second motivation becomes clear after one rewrites the scattering amplitude (1) in
the following form:

S(θ) = sinh θ − i cosh θ0

sinh θ + i cosh θ0
. (3)

This expression bears a strong resemblance to the scattering amplitude in the sinh-Gordon
model, i.e. the model of 2D scalar field ϕ(x) with the action

AshG =
∫ [

1

2
(∂aϕ)2 − 2µ cosh βϕ

]
d2x, (4)

where β is the dimensionless coupling constant. The second term in action (4) can be viewed
as the perturbation of the CFT of free massless scalar field by the operator eβϕ + e−βϕ of
negative dimension

� = −β2/8π; (5)

the dimensional coupling µ is therefore µ ∼ [mass]1+β2/8π . Like the sine-Gordon model,
model (4) is massive and integrable [6]. The corresponding RFST is just the theory of single
neutral massive particle with the scattering amplitude [6, 7]

SshG(θ) = sinh θ − i sin γ

sinh θ + i sin γ
, (6)

where constant γ is related to the sinh-Gordon coupling β as follows [6, 7]:

γ = β2/8

1 + β2/8π
. (7)

Comparing equations (3) and (6) one observes that the scattering theory (3) can be viewed
as an analytic continuation of the sinh-Gordon RFST (6) to complex values of the coupling
constant γ :

γ = π

2
± iθ0. (8)

This observation will be used below for speculations.

4. The TBA equation

Since we are dealing with the diagonal RFST (1), the derivation of the corresponding
TBA system goes along the standard lines. We shall not discuss here the details of the TBA
technique, referring to papers [1–3] for general definitions and derivations. In brief, TBA
describes the free energy of an integrable relativistic field system at finite temperature T or,
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equivalently, the ground state energy E(R) of the same system living on the space circle of
finite length R = 1/T . The finite-temperature effects are described by a set of pseudoenergies
εa , one for each specie of stable particles in the RFST spectrum. The pseudoenergies εa(θ) are
real functions of rapidity; roughly speaking, quantities 1/(1 + exp(εa(θ)) characterize filling
of the particle states at rapidity θ .

In the scattering theory introduced above (equation (1)), corresponding to single stable
particle we have single pseudoenergy ε(θ), which determines the finite size ground state
energy

E(R) = − m

2π

∫
L(θ) cosh θ dθ (9)

and satisfies the following nonlinear integral equation:

−mR cosh θ + ε +
1

2π
ϕ ∗ L = 0, (10)

where star ∗ denotes the rapidity convolution. Note that in the RFST (1) we have S(0) = −1
and therefore the TBA system (9), (10) is of ‘fermionic’ type [2, 3]. In equations (9) and (10)
the notation

L(θ) = log(1 + e−ε(θ)) (11)

is used. Information about the scattering theory (1) is carried by the kernel ϕ(θ):

ϕ(θ) = −i
∂

∂θ
log S(θ) = 4 cosh θ0 cosh θ

cosh 2θ + cosh 2θ0

= 1

cosh(θ + θ0)
+

1

cosh(θ − θ0)
. (12)

The UV limit in the TBA equation (10) corresponds to R → 0 where one expects the behaviour
to be governed by the limiting UV CFT of the background field theory. For the Casimir energy
(9) CFT predicts [8] E(R) ∼ πcUV/6R, where cUV is the central charge characteristic for
the UV CFT. At moderate distances it is convenient to define the effective central charge
ceff(R) [3],

E(R) = −πceff(x)

6R
, (13)

which is a function of the circle length R or, more conveniently, of the variable

x = log
mR

2
. (14)

For the UV calculations it is convenient to perform an overall rapidity shift in equation (10)
and rewrite it in the form

−eθ − e2x e−θ + ε +
1

2π
ϕ ∗ L = 0 (15)

with the effective central charge given by

ceff(x) = 6

π2

∫
eθL(θ) dθ. (16)

Here it is probably safe to keep temporarily the same notation L(θ) for the shifted
function (11). In the UV limit x = −∞, it is possible to neglect the term e2x e−θ in the
TBA equation (15). This results in the scale invariant reduced TBA equation, for which one
has a solution with the limiting value limθ→−∞ ε(θ) = ∞. Standard central charge calculation
[2, 3] then gives for cUV = ceff(−∞),

cUV = 1. (17)
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Slightly more subtle consideration about the next UV corrections is performed in appendix A.
It results in the following leading x → −∞ behaviour of the effective central charge:

ceff(x) = 1 − 3
(
θ2

0 + π2/4
)

2x2
+ O

(
1

x3

)
. (18)

Note that this form of UV behaviour differs essentially from the usual perturbative expansion
of the Casimir energy in fractional powers of R [2–4]. In the case of sinh-Gordon field theory,
which corresponds to purely imaginary θ0, the origin of these logarithmic UV corrections
can be traced to the contribution of the sinh-Gordon zero mode fluctuations. In appendix B
the zero mode contribution to the Casimir energy is carried out in the UV limit. For the
leading logarithmic correction we find exactly the same expression (18) (with θ0 imaginary).
Besides the logarithmic zero mode terms one also expects the usual power-like perturbative
UV corrections.

An interesting structure connected with the TBA equation (10) is worth mentioning.
Usually, it is more convenient to study the UV properties of TBA equations representing
them in the universal functional form [9]. In particular the structure of the UV perturbative
expansions is readily observed in this way. With the kernel (12), the functional form reads as
a finite difference functional relation for the function Y (θ) = exp(−ε(θ)):

Y
(
θ +

iπ

2

)
Y

(
θ − iπ

2

)
= (1 + Y (θ + θ0))(1 + Y (θ − θ0)). (19)

Restricting the entire function Y (θ) at the lattice θmn = 	 + mθ0 + iπn/2 (where m, n ∈ Z

and 	 is an arbitrary origin of the lattice) in the complex θ -plane and denoting Ymn = Y (θmn),
we arrive at the two-dimensional nonlinear discrete equation

Ym,n+1Ym,n−1 = (1 + Ym+1,n)(1 + Ym−1,n). (20)

It is interesting to note the resemblance of the functional equation (19) to the analogous
functional form corresponding to the infinite TBA chains suggested in [10] for integrable
asymptotically free field theories. In that case there was an infinite number of entire functions
Ym(θ) satisfying the following functional system:

Ym

(
θ +

iπ

2

)
Ym

(
θ − iπ

2

)
= (1 + Ym+1(θ))(1 + Ym−1(θ)) (21)

Being restricted to the string of complex values θn = 	 + iπn/2, n ∈ Z, this system again
becomes the discrete equation (20). Thus the system (20) seems rather important and universal.
Since it appears in the context of integrable field theory, it is natural to expect it to be also
integrable in some sense.

5. Qualitative considerations

Turn to qualitative discussion of the TBA equation (10). We are going to follow the
development of function L(θ) with the variable x decreasing continuously from the massive
region x > 0 to the deep UV limit x → −∞. Peculiarities of equation (10) are most prominent
when θ0 � 1. In this case the kernel (12) exhibits two far separated bumps at θ = ±θ0, as
shown in figure 3 (for θ0 = 50). This implies that at x ∼ 1 the convolution term in equation
(10) does not influence the behaviour of the solution, which follows therefore the free fermion
pattern, i.e. L(θ) = log

(
1 + e−mR cosh θ

)
. At x > 0 we have the bell-shaped L(θ) (figure 4(a)),

characteristic for the massive region, where ceff falls exponentially with R. Then, at x < 0,
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Figure 3. Kernel (12) at θ0 = 50.

L(θ) develops a plateau of height log 2 in the region x < θ < −x (figure 4(b)), i.e. the pattern
characteristic for the free neutral fermion UV behaviour. As x decreases the plateau broadens
and ceff(x) saturates the characteristic free fermion limit ceff = 1/2. It goes on this way until
at x ∼ −θ0/2 two plateau edges interact via the kernel in equation (10) (figure 1(c)). ceff

deviates here from 1/2. Since at θ0 � 1 the edges are far separated, we readily realize that
the interaction can be described by two separate interacting integral equations for two separate
pseudoenergies ε1(θ) = ε(θ + θ0/2) and ε2(θ) = ε(θ − θ0/2). In fact, the resulting system
coincides with the system of two TBA equations related in [5] to the integrable trajectory
interpolating between the tricritical Ising and critical Ising fixed points. Therefore, as x goes
down through the region x ∼ −θ0/2, the effective central charge switches from ceff = 1/2 to
the characteristic tricritical Ising value ceff = 7/10, the interpolating curve ceff(x) following in
this region almost exactly (at θ0 � 1) the curve of [5]. At x well below −θ0/2, in the rapidity
regions θ0 + x < θ < −x and x < θ < −θ0 − x we have approximately constant solutions
of the two coupled TBA equations. Function L(θ) develops here two higher plateaux of
height 2 log

(
2 cos π

5

)
, which rise above the main plateau in between (figure 1(d)). The central

charge is approximately constant ceff = 7/10 until at x ∼ −θ0 these two higher plateaux join at
the centre θ ∼ 0 (figure 1(e)). Here the central region interacts via the kernel (12) with both the
edges and we can simulate equation (10) introducing three separate pseudoenergies to describe
the two edges and the central region. These three are again governed by the coupled TBA
system, suggested in [5] to interpolate between the M5 and M4 minimal model fixed points.
Therefore at x ∼ −θ0 we expect a new switch from ceff = 7/10 to ceff = 4/5, which again
follows nearly the integrable M5 → M4 trajectory. At −3θ0/2 < x < −θ0 we observe L(θ)

with three plateaux (figure 1(f )), right and left ones of height log 3 and the central plateau
of height log 4, all rising above the intermediate level 2 log(2 cos π/5). The plateaux broaden
with x decreasing and collide at x ∼ −3θ0/2 (figure 1(g)), where we expect again a jump from
ceff = 4/5 to ceff = 6/7, i.e. the value characteristic for the M6 fixed point. This goes on with
x going down to −∞. Every time x ∼ −(p − 2)θ0/2, p = 3, 4, 5, . . . , a switch occurs from
the Mp central charge ceff = 1−6/(p(p+1)) to the Mp+1 value ceff = 1−6/((p+1)(p+2)),
the function L(θ) acquiring more and more complicated form with multiple plateaux. Few
more Gothic examples are plotted in figures 4(h)–(k). Like figures 4(a)–(g), they are obtained
by numerical integration of equation (10) (see the next section).

Finally, for θ0 � 1 we expect the function ceff(x) to have a staircase behaviour with
the steps of height ceff = 1 − 6/(p(p + 1)) inside every interval −(p − 2)θ0/2 < x <

−(p − 3)θ0/2, p = 3, 4, 5, . . . . Clearly, the difference between the neighbouring steps
becomes small at x → −∞ and the staircase picture is slurred. Note that on average
the heights and width of the steps are consistent with the asymptotic behaviour (18) (recall
that θ0 is large).
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(a) (b)

(e) ( f )

(g) (h)

(i)

(k)

( j )

(c) (d )

Figure 4. (a) Function L(θ) in the massive region x ∼ 0 (θ0 = 50). (b) At x > −θ0 interaction
is absent. L(θ) follows the free fermion pattern (θ0 = 50). (c) Resonance interaction between
the edge particles at x ∼ −θ0/2 (θ0 = 50). (d) Three plateaux pattern at −θ0 < x < −θ0/2
(θ0 = 50). (e) x ∼ −θ0 (θ0 = 50). Central particles interact with the plateau edges. (f ) Central
and border plateaux broaden when x decreases in the interval −3θ0/2 < x < −θ0 (θ0 = 50).
(g) x ∼ −3θ0/2 (θ0 = 50). (h) Example of L(θ) at θ0 = 50 and x = −105. (i) Example of L(θ)

at θ0 = 50 and x = −120. (j) Example of L(θ) at θ0 = 50 and x = −180. (k) Example of L(θ)

at θ0 = 50 and x = −220. In pictures (a)–(k) the arguments θ and functions L(θ) are denoted β

and L(β) respectively.
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(a) (b)

(c) (d)

Figure 5. (a) Effective central charge behaviour at θ0 = 0. Result of numerical solution of TBA
equation (10). (b) ceff(x) at θ0 = 10. (c) ceff(x) at θ0 = 20. (d) Staircase pattern of ceff(x) at
θ0 = 50.

6. Numerical calculations

TBA equation (10) was solved numerically by iterations of the function L(θ), which was
represented as a set of values at discrete rapidity points separated by �θ = 0.2. Some
numerical examples of L(θ) are presented in figure 4; they were already discussed in the
previous section. Few plots of the effective central charge ceff(x) are drawn in figure 5 for
θ0 = 0, 10, 20 and 50. While at θ0 we observe a smooth curve interpolating between ceff = 1
at x → −∞ and ceff = 0 at x > 2, the staircase pattern speculated above becomes more and
more prominent as θ0 increases. At θ0 = 50 (figure 5(d)) one can clearly recognize as much
as eight steps, the highest being of height 21/22 and corresponding to M11 central charge.
In fact, figure 5(d) implies even more distinct steps at x < −200. However, in this region
ceff(x) was not carried out numerically because of deterioration of the iterative procedure.

7. Roaming trajectories

Patterns of figures 5(b)–(d) give rise to a remarkable interpretation in terms of the
renormalization group (RG) flows. It was observed in [11] that in the RG space there is an
infinite sequence of fixed points, corresponding to the conformal minimal models Mp, p =
3, 4, . . . . These points are characterized by the central charge values cp = 1 − 6/(p(p + 1))

and at p → ∞ are condensed (in the RG sense) near the limiting fixed point M∞ with
c = 1. Every two successive fixed points Mp and Mp−1 are connected by the RG trajectory
Mp → Mp−1. This trajectory corresponds to massless interpolating field theory, which has
the Mp CFT asymptotic in the UV limit, while the massless infrared region is controlled by
the CFT model Mp−1. The whole trajectory is drawn from the UV fixed point by the relevant
Mp operator 
13. In the infrared limit the trajectory is attracted to Mp−1 by the irrelevant
scalar field 
31 of the infrared minimal CFT. This pattern, which is drawn conventionally in
figure 6, was demonstrated in [11, 12] by the perturbative RG analysis, reliable at p large. It
is commonly believed that the qualitative picture holds for all p > 3 (at M3 the attracting
operator 
31 is substituted by the descendant CFT field T̄ T [13, 5]) until finally at M3 the
operator 
13 generates a trajectory with massive infrared behaviour (figure 6).
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Figure 6. Sequence of Mp fixed points connected by integrable interpolating trajectories
Mp → Mp−1 is drawn schematically. At θ0 → ∞ the wandering trajectory flows arbitrary
close near the sequence.

The characteristic staircases of figures 5(b)–(d) are suggestive for the trajectories
flowing near the succession of Mp fixed points, as it is pictured schematically in figure 6.
Corresponding to the parameter θ0 we have a one-dimensional variety of roaming trajectories
of this kind. Every trajectory starts at the limiting fixed point M∞, in consistency with the UV
central charge (17). At θ0 large enough the trajectory flows very close to the fixed points Mp,
spending approximately the same fraction θ0/2 of the RG ‘time’ x near each one and jumping
in between successively from one fixed point Mp to the next one Mp−1 approximately along
the interpolating trajectory Mp → Mp−1. The larger the value of θ0 the closer the approach
of the trajectory to the fixed points and the nearer the paths in between to the massless flows
Mp → Mp−1. The time θ0/2 near each point becomes very large and the transitions of the
effective central charge ceff(x) follow the same form as for the massless interpolations, just
as it was speculated above qualitatively. Since at p large the fixed points Mp are very close
to each other in the RG space, the picture of distinct successive transitions between the fixed
points is slurred at x → −∞.

It follows from the results of [14] that all the interpolating trajectories Mp → Mp−1

are integrable. We observed, in addition, a one-parameter family of integrable wandering
trajectories for which the succession of Mp → Mp−1 flows is unified as the limiting θ0 → ∞
trajectory.

It remains to be verified, however, that the picture above is consistent with the perturbative
RG predictions, at least at −x/θ0 � 1, where the trajectory is near the large p fixed
points Mp.

8. The beta-function

The numerical data obtained in section 6 can be used to calculate the RG beta-functions
along the corresponding RG trajectories. Instead of the scale parameter x we parameterize the
trajectory with the ‘coupling constant’ parameter g and denote φ the corresponding tangential
operator, which draws the field theory along the trajectory, i.e.,

〈φ〉R = π

6R

∂ceff

∂g
, (22)
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(a)

(c)

(b)

Figure 7. (a) RG beta-function along the trajectory θ0 = 10. It exhibits deeps near g =
6/(p(p + 1)), p = 3, 4, . . . . (b) Beta-function along the θ0 = 20 trajectory. (c) At θ0 = 50 β(g)

is indistinguishable from the sequence of beta-functions along the interpolating trajectories
Mp → Mp−1.

where 〈· · ·〉R is the expectation value in the TBA geometry, i.e. on the infinite cylinder
of circumference R. Since ceff is a monotonically decreasing function of the scale (see
figures 5(a)–(d)), we can normalize the field φ as follows:

− 6

π
〈φ〉R=1 = 1. (23)

Note that this norm is not necessarily the same as the norm in the RG metric introduced in
[15] in terms of two-point correlation functions. It is clear, however, that the norm (23) is
physically close to that determined by the metric of [15] and therefore it can be used for
qualitative considerations. Normalizing g to be zero at the UV fixed point we find from
equation (22)

g = cUV − ceff, (24)

i.e. with the norm (23) the trajectory is parameterized by just the effective central charge.
Differentiating this with respect to the scale parameter x we find

β(g) = −∂ceff

∂x
. (25)

Equations (24) and (25) give a parametric representation of the RG function β(g).
In figures 7(a)–(c) the numerical results are pictured for θ0 = 10, 20 and 50. At θ0 = 10

(figure 7(a)) β(g) exhibits a series of deeps near the values g = 6/(p(p + 1)), p = 3, 4, . . . ,

indicating the presence of fixed points nearby. In figure 7(b) (θ0 = 20) several first deeps
(with p < 6) are already indistinguishable from zeros. The beta-function in between remains
unchanged under further growth of θ0 and in fact coincides with the beta-functions along
the corresponding interpolating trajectories. What is changing when θ0 increases further is
that the higher deeps (corresponding to larger p) turn subsequently to zeros, the intermediate
beta-function being stabilized at the corresponding interpolating shapes (figure 7(c)).

9. Complex dimensions?

To conclude we develop here few speculations about the formal analytic connection (8)
between the resonance RFST (3) and the sinh-Gordon scattering theory. The sinh-Gordon
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perturbation eβϕ + e−βϕ consists of two free field exponentials. According to the two signs in
equation (8) there are two possible continuations of each term, which result in four complex
exponentials U± = exp(±i

√
8πα+ϕ) and V± = exp(±i

√
8πα−ϕ), where

α± = iπ/2 ± θ0√
π2/4 + θ2

0

, α+α− = −1. (26)

From the CFT point of view these exponentials are scalar primary fields of complex conformal
dimensions �+ = dim(U±) and �− = dim(V±):

�+ = θ0 + iπ/2

θ0 − iπ/2
, �− = 1/�+. (27)

Nevertheless, along the lines of [14] one can verify that under all the four exponential
perturbations U± and V± the same infinite set of local integrals of motion survives. This
means that formally every perturbation of the form

A =
∫ [

1

2
(∂µϕ)2 + µ+U+ + µ−U− + ν+V+ + ν−V−

]
d2x (28)

(where µ± ∼ (mass)2−2�+ and ν± ∼ (mass)2−2�− are arbitrary coupling constants of complex
dimensionality) is locally integrable. It is interesting to note that the formal perturbative
expansion of the Casimir energy (or the effective central charge (13)) with the action (28)
results in a series of the following form:

∞∑
m,n=0

Fmn(µ+µ−)m(ν+ν−)nR2(ω+m+ω−n), (29)

where Fmn are the numerical coefficients determined by the corresponding perturbative
integrals and ω± = 2 − 2�±. If action (28) is real, the perturbative expansion is also
real and we have a series in the oscillating functions:

∞∑
m,n=0

Gmn exp

(
2π2(m + n)x

θ2
0 + π2/4

)
cos

(
4π(m − n)θ0(x − xmn)

θ2
0 + π2/4

)
, (30)

where x was defined in equation (14) while Gmn and xmn are the real constants. The main
period of oscillations here is

(
θ2

0 + π2/4
)/

2θ0. At θ0 � 1 this is just θ0/2, in agreement with
the period observed above in the TBA considerations.

Apparently, the observations of the paper imply more questions than answers. The most
annoying puzzle is the field theory background of the resonance RFST suggested in section 2.
The action (28) would be an excellent candidate if it were not be apparently ill defined. Even
being chosen real it by no means can be arranged bounded from below. Therefore, even if
this action makes any sense (as the perturbative considerations suggest), its precise meaning
should be specified.
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Appendix A

Here we consider the TBA equation (15) in the limit x → −∞, having in mind to keep
the logarithmic UV corrections to the effective central charge (16) while neglecting the
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exponentially small in x (perturbative) contributions. Kernel (12) has the following Fourier
transform:

ϕ(k) =
∫

ϕ(θ) eikθ dθ = 2π cos θ0k

cosh(πk/2)
. (A.1)

Expanding ϕ(k) in powers of k

1

2π
ϕ(k) =

∞∑
n=0

(−)n
ϕ2n

(2n)!
k2n, (A.2)

where

ϕ0 = 1

ϕ2 = (
θ2

0 + π2/4
)

ϕ4 = (
θ2

0 + π2/4
)(

θ2
0 + 5π2/4

)
ϕ6 = (

θ2
0 + π2/4

)(
θ4

0 + 7π2θ2
0 /2 + 61π4/16

)
· · · .

(A.3)

we can formally represent equation (15) as an infinite-order ordinary differential equation

eθ + e2x e−θ + log(1 − e−L(θ)) =
∞∑

n=1

ϕ2n

(2n)!
L(2n)(θ), (A.4)

where we denoted L(n)(θ) = (d/dθ)nL(θ).
If x → −∞ and the rapidity region θ − 2x � 1 is considered, one can neglect e2x e−θ

on the left-hand side of equation (A.4) and consider the reduced equation

eθ + log(1 − e−L(θ)) =
∞∑

n=1

ϕ2n

(2n)!
L(2n)(θ). (A.5)

On the other hand, it is this region y < θ < ∞; y ∼ x, where the integral of equation (16)
gains almost all its amount, leaving an exponentially small contribution for the rest region of
integration. It is convenient to define the truncated version of integral (12), introducing the
truncated effective central charge ceff(x, y):

π2

6
ceff(x, y) =

∫ ∞

y

eθL(θ) dθ. (A.6)

Note that when y ∼ x or less, the truncated central charge becomes independent of y and in
fact coincides with the total one ceff(x) (of course, up to exponentially small contributions).

Obviously ceff(x, y) satisfies the differential equation in y:

π2

6

∂ceff(x, y)

∂y
= −e−yL(y). (A.7)

One can verify directly that the following expression

π2

6
ceff(x, y) = −1

2

∞∑
n=1

ϕ2n

(2n)!

2n−1∑
k=1

(−)kL(k)(y)L(2n−k)(y) −
∫ L(y)

0
log(1 − e−t ) dt − eyL(y)

(A.8)

formally solves equation (A.7) provided L(y) satisfies equation (A.5). Moreover, since as
y → +∞ the function L(y) vanishes together with all its derivatives, we have from (A.8)
ceff(x,∞) = 0 and therefore expression (A.8) coincides with the integral (A.6).
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Note that at x → −∞ and θ − 2x � θ0 there are two qualitatively different rapidity
regions in the TBA equation (15). In the region θ ∼ θ0 (the edge region), the non-local nature
of the TBA equation is essential and all the derivative terms in formal expansion (A.5) are
relevant. In contrast, at θ well below −θ0 (the central region) function L(θ) is large and slowly
varying. To a certain logarithmic approximation one can neglect here the infinite sequence
of higher derivative terms keeping a finite number of first ones. Now we are going to restrict
ourselves to the leading logarithmic correction to ceff(x). In this case it is consistent to keep
in equation (A.5) only the second-order derivative and only the first term in the expansion
log(1 − e−L) = −e−L + · · · . In the central region we can also neglect the eθ term on the rhs
of equation (A.5) and deal with

θ2
0 + π2/4

2
L′′(θ) + e−L(θ) = 0. (A.9)

The truncated central charge (A.8) takes the following form in this approximation:

ceff(x, y) = 1 +
3
2

(
θ2

0 + π2/4
)

π2
(L′(θ))2 − 6

π2
e−L(y). (A.10)

This expression is easily verified to be independent of y provided L(y) satisfies
equation (A.9). An appropriate solution to equation (A.9) in the central region is

L(θ) = log
sin2 λ(θ − a)

λ2
(
θ2

0 + π2/4
) , (A.11)

where λ and a are the parameters to be determined by the boundary conditions at θ ∼ θ0

and θ − 2x ∼ θ0. In the limit x → −∞ parameter λ tends to zero, while a becomes some
x-independent constant a0, which cannot be determined in our approximation and requires the
solution of the whole equation (A.5) in the edge region θ ∼ θ0. Respecting the symmetry
θ → 2x − θ of the TBA equation (15) we find

λ = π/2

a0 − x
. (A.12)

Finally, substituting solution (A.11) we find the effective central charge (A.10) to the leading
logarithmic approximation

ceff(x) = 1 − 6λ2

π2

(
θ2

0 + π2/4
) = 1 −

3
2

(
θ2

0 + π2/4
)

(a0 − x)2
. (A.13)

Appendix B

Consider the sinh-Gordon model (4) on the infinite cylinder of circumference R. Since this field
theory can be viewed as a perturbation of the free massless CFT, the leading UV behaviour of
the Casimir energy E(R) = πceff/6R is governed by the CFT central charge limR→0 ceff = 1.
At R → 0 corrections are dominated by the fluctuations of the zero mode ϕ0 of field ϕ. We
shall see below that these fluctuations contribute non-perturbatively in the effective coupling
constant t = µR2π/(π−γ ). Contributions of the non-zero mode excitations are relatively
suppressed by powers of t. The zero mode dynamics is governed by the Schrödinger equation
with the cosh βϕ0 potential. We arrive at the lowest eigenvalue problem for the hyperbolic
Mathieu equation,(

−1

2

d2

dϕ2
0

+ 8π2t cosh βϕ0

)
�(ϕ0) = πε

6
�(ϕ0), (B.1)
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which we should inspect in the limit t → 0. In equation (B.1) ε = 1 − ceff(t) and �(ϕ0) is
the ground state zero mode wavefunction.

At t → 0 there is a central region in ϕ0, where |ϕ0| � β−1 log(ε/(48πt)), and one can
neglect the potential term in equation (B.1). For the ground state eigenfunction we find here

�(ϕ0) = A cos(pβϕ0), (B.2)

where A is some normalization constant and

ε = 3β2p2

π
. (B.3)

On the other hand, in the edge region ϕ0 ∼ β−1 log(ε/(48πt)) one can substitute 2 cosh βϕ0 =
eβϕ0 and deal with the Bessel equation:(

−1

2

d2

dϕ2
0

+ 4π2t eβϕ0

)
�(ϕ0) = πε

6
�(ϕ0). (B.4)

Appropriate solution, which decreases as ϕ0 → ∞, involves the modified Bessel function
Kν(z):

�(ϕ0) = BK2ip

(
4π

β

√
2t eβϕ0/2

)
, (B.5)

where B is an arbitrary wavefunction normalization. Solutions (B.2) and (B.5) match in the
central region provided

p log
8π2t

β2
+ φ(p) = π

2
, (B.6)

where

φ(p) = − i

2
log

�(1 − 2ip)

�(1 + 2ip)
. (B.7)

From equation (B.6) we find at t → 0

p = π/2

log(8π2t/β2) + 2C
, (B.8)

where C is Euler’s constant. Finally, we get

ε = 3γ (π − γ )

2
(

log(Rµ(π−γ )/2π ) + π−γ

2π
log 8π2

β2 + 2C
)2 (B.9)

in agreement with the analytic continuation of equation (18).
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